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Abstract

Background: Forage plays critical roles in milk performance of dairy. However, domestic high-quality forage such
as alfalfa hay is far from being sufficient in China. Thus, more than 1 million tons of alfalfa hay were imported in
China annually in recent years. At the same time, more than 10 million tons of corn stover are generated annually
in China. Thus, taking full advantage of corn stover to meet the demand of forage and reduce dependence on
imported alfalfa hay has been a strategic policy for the Chinese dairy industry. Changes in liver metabolism under
different forage resources are not well known. Thus, the objective of the present study was to investigate the effect
of different forage resources on liver metabolism using RNAseq and bioinformatics analyses.

Results: The results of this study showed that the cows fed a diet with corn stover (CS) as the main forage had
lower milk yield, DMI, milk protein content and yield, milk fat yield, and lactose yield than cows fed a mixed forage
(MF) diet (P < 0.01). KEGG analysis for differently expressed genes (DEG) in liver (81 up-regulated and 423 down-
DEG, Padj ≤0.05) showed that pathways associated with glycan biosynthesis and metabolism and amino acid
metabolism was inhibited by the CS diet. In addition, results from DAVID and ClueGO indicated that biological
processes related to cell-cell adhesion, multicellular organism growth, and amino acid and protein metabolism also
were downregulated by feeding CS. Co-expression network analysis indicated that FAM210A, SLC26A6, FBXW5, EIF6,
ZSCAN10, FPGS, and ARMCX2 played critical roles in the network. Bioinformatics analysis showed that genes within
the co-expression network were enriched to “pyruvate metabolic process”, “complement activation, classical
pathway”, and “retrograde transport, endosome to Golgi”.

Conclusions: Results of the present study indicated that feeding a low-quality forage diet inhibits important
biological functions of the liver at least in part due to a reduction in DMI. In addition, the results of the present
study provide an insight into the metabolic response in the liver to different-quality forage resources. As such, the
data can help develop favorable strategies to improve the utilization of corn stover in China.
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Background
Forage is the largest component of the diet of lactating
cows and could affect dry matter intake (DMI) [1] and
consequently milk performance. Nutrient content such
as crude protein (CP), neutral detergent fiber (NDF),
and non-fibrous carbohydrate (NFC) of different forages
differ greatly. For instance, alfalfa hay, a well-known high
quality forage, contains higher CP, rumen degradable
protein (RDP), and rumen undegradable protein (RUP)
content than corn stover and Chinese wild rye grass [2].
Increasing RUP by 1% can improve milk production by
1 kg [3]. In addition, cows fed high proportions of alfalfa
hay have higher milk protein production by increasing
microbial protein yield, which may be attributed to the
increased supply of rumen-available energy [2].
While high-quality forage such as alfalfa hay is still a

bottleneck for the development of the dairy industry in
China, it has become one of the largest dairy producers
in the world [4]. In 2019, more than 1.2 million tons of
alfalfa hay were imported to cover the shortage of high-
quality forage in China [5]. At the same time, it is
estimated that more than 10 million tons of corn stover
are generated annually in China [6]. Thus, taking full
advantage of crop residues such as corn stover to meet
the demand of forage and reduce dependence on
imported alfalfa hay has been a strategic policy for the
Chinese dairy industry [2].
In the last 10 years, a large number of studies to evaluate

the nutritive value of corn stover or Chinese wild rye grass
have been conducted [2, 4, 7, 8]. For instance, Zhu et al.
(2013) investigated the effect of different forage sources on
lactation performance, microbial protein (MCP) synthesis,
and N utilization efficiency in early lactation dairy cows
[2]. Through studying metabolites from four biofluids
(rumen fluid, milk, serum, and urine), Sun et al. (2015)
elucidated the metabolic mechanisms of milk production
affected by forage quality [4]. Zhang et al. (2014) evaluated
the effects of diets with three different quality forage
sources (alfalfa hay, L. chinensis and cornstalk) on the
rumen microbiota of dairy cows [7].
In ruminants, liver contributes to more than 80% of the

glucose produced via gluconeogenesis [9, 10]. In addition,
liver is a critical hub for numerous physiological processes
including lipid metabolism, amino acid metabolism, detoxi-
fication, and immune defense [11, 12]. Overall function and
metabolism of the liver are sensitive to the plane of nutri-
tion of the cows. For instance, Shahzad et al. (2014) demon-
strate that the liver of cows fed a diet to meet 80% of
estimated requirements had greater lipid and amino acid
catabolic capacity and a more pronounced cellular inflam-
matory and endoplasmic reticulum stress response, while
the liver of cows fed to meet or exceed requirements
had a larger cell proliferation and cell-to-cell commu-
nication and greater activation of pathways/functions

related to triacylglycerol synthesis [13]. Previous
studies have been mainly focused on the effect of
different forage resources on lactation performance
and rumen fermentation, but simultaneous changes in
liver metabolism under different forage resources are
not well known. Thus, the objective of the present
study was to investigate the effect of different forage
resources on liver metabolism using RNAseq and bio-
informatics analyses.

Results
Milk performance of cows fed different forage resources
As shown in Table 1, milk yield (30.5 vs. 23.1 kg/d,
P < 0.01) and efficiency (1.47 vs. 1.32%, P < 0.01) was
lower with CS than MF. In addition, DMI (21.4 vs. 17.4
kg/d, P < 0.01), milk protein content and yield (3.66 vs.
3.32%, P < 0.01;1.11 vs. 0.77 kg/d, P < 0.01), milk fat
yield (1.34 vs. 1.02 kg/d, P < 0.01), and lactose yield
(1.47 vs. 1.13 kg/d, P < 0.01) were all decreased by CS
compared with MF.

Differently expressed genes (DEG) and functional analysis
A total of 8582 unigenes were detected in the liver of
dairy cows and 504 DEG (81 up- regulated and 423
down-DEG, Padj ≤0.05) were identified between cows
consumed CS and MF (Additional File 1). Functional
analysis for the DEG was performed using DIA, DAVID,
and ClueGO.
The whole DIA output is available in Additional File 1.

As shown in Fig. 1 where the perturbation in CS cows
vs. MF cows on the main categories of the KEGG pathways
in liver is summarized, all categories and subcategories were
inhibited to different extents. For instance, “Metabolism”
followed by “Genetic Information Processing” and “Envir-
onmental Information Process” were the most impacted.
Within the most impacted category of “Metabolism”
(Fig. 1), the subcategory “Glycan Biosynthesis and

Table 1 Milk yield and composition of lactating cows fed diets
based on different forage sources

Items Treatments SEM P-value

MF CS

DMI, kg/d 21.4 17.4 0.14 < 0.01

Milk yield, kg/d 30.5 23.1 0.90 < 0.01

Protein, % 3.66 3.32 0.07 < 0.01

Protein yield, kg/d 1.11 0.77 0.03 < 0.01

Fat, % 4.46 4.38 0.13 0.65

Fat yield, kg/d 1.34 1.02 0.03 < 0.01

Lactose, % 4.86 4.80 0.03 0.09

Lactose yield, kg/d 1.47 1.13 0.04 < 0.01

Efficiencya, % 1.47 1.32 0.04 < 0.01
aEfficiency = Milk yield/DMI
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Metabolism” was the most impacted and was overall
inhibited. Among the top 20 impacted pathways in liver
tissue of CS compared with MF cows uncovered by the

DIA, most of the pathways were inhibited (Fig. 2). Few
pathways such as “Sulfur relay system”, “Vitamin B6
metabolism”, and “Glycosaminoglycan biosynthesis-

Fig. 1 Summary of the main categories and sub-categories of KEGG pathways as results of the transcriptomic effect on liver tissue of corn stover (CS)
compared to mixed forage (MF) as analyzed by the Dynamic Impact Approach. On the right are the bar denoting the overall impact (in blue) and the
shade denoting the effect on the pathway (from green – inhibited – to red – activated). Darker the color larger the activation (if red) or inhibition (if
green) of the pathway
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keratan sulfate” were highly activated, and “Glycosamino-
glycan biosynthesis-ganglio series” and “alpha-Linolenic
acid metabolism” were modestly activated. Furthermore,
among the top 20 most impacted pathways, approximately
25% were related to “Glycan Biosynthesis and Metabolism”
with the pathway of “Glycosphingolipid biosynthesis
– globo series” being the most impacted (Fig. 2).
Results of DAVID analysis are shown in Fig. 3 where

KEGG and GO Biological Process (GO_BP) analysis
were conducted. The GO_BP analysis revealed that 14

and 6 different terms (P ≤ 0.05) were enriched by down-
regulated DEG and upregulated DEG respectively. For
the KEGG analysis, there were 8 terms enriched among
DEG in total, with 5 terms enriched with downregulated
DEG (P ≤ 0.05).
The GO_BP analysis was also performed using

ClueGO (Fig. 4). The results show that downregulated
DEG were enriched to “pyruvate metabolic process”,
“positive regulation of proteasomal protein catabolic”,
“amide biosynthetic process”, and “regulation of

Fig. 2 The 20 most impacted pathways in liver tissue of corn stover (CS) compared to mixed forage (MF) uncovered by the Dynamic Impact
Approach. On the right are the bar denoting the overall impact (in blue) and the shade denoting the effect on the pathway (from green –
inhibited – to red – activated). Darker the color larger the activation (if red) or inhibition (if green) of the pathway

Fig. 3 Significantly enriched Gene Ontology Biological Process and KEGG pathways revealed by DAVID analysis of the transcripts up- (in red
shade in the figure) or down- (in blue shade in the figure) regulated in liver tissue of corn stover (CS) compared to mixed forage (MF) cows. In
vertical axis is the terms, in horizonal axis is the transformed FDR (−log10PValue)
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multicellular organism growth”, while the upregulated
DEG were enriched to “myeloid cell development”,
“Schwann cell development”, and “negative regulation of
small GTPase mediated signal transduction” (P ≤ 0.05).

Co-expression Network and Functional analysis.
Co-expression network analysis provides insights into the
patterns of transcriptome organization and can reveal
common biological functions among network genes [14].

Fig. 4 Functional annotation of DEGs using ClueGO. a: Enriched by downregulated DEGs; b: Enriched by upregulated DEGs. Each node is a Gene
Ontology (GO) Biological Process term. The size of the nodes reflects the statistical significance of each term. Larger the node size, smaller the P-
value. Different node colors represent different functional groups. The name of each group is given by the most significant term of the group.
The nodes are grouped by similarity of their associated genes

Fig. 5 Co-expression networks constructed using differently expressed genes (DEG) with absolute correlation ≥0.9 and adjusted p-value ≤0.01 by
Cytoscape. The color of the nodes represents the fold change of the gene expressed in mixed forage (MF) compared to corn stover (CS).
Upregulated genes are in red color, downregulated genes in blue color. Deeper the color, higher the fold changes. The size of the nodes
represents the combined ranking of the degree and betweenness of the nodes (genes) in the network. Larger the size, higher the ranking. Color
of the edges represent the correlation between the genes. Positive correlation is in red, negative correlation is in blue. The width of the edge
represents significance of the correlation between the two genes. Larger the width, smaller the Padj
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The co-expression network analysis of this study was
conducted using DEG with correlation > 0.9 and Padj
< 0.01 (Additional file 4). The entire co-expression
network is shown in Fig. 5, and the annotation informa-
tion of the genes is available in Fig. 6. As shown in Fig. 5,
the co-expression network revealed 7 genes (FAM210A,
SLC26A6, FBXW5, EIF6, ZSCAN10, FPGS, ARMCX2)
with higher degree and betweenness centrality (ranking in
top 7, Additional file 5) than others, indicating a more
critical role played by them in the network.
Annotation information analysis for the genes within the

co-expression network was performed using ClueGO and
is shown in Fig. 6. Genes within the whole network were
significantly enriched in “complement activation, classical
pathway”, “retrograde transport, endosome to Golgi”, “posi-
tive regulation of proteasomal ubiquitin-dependent protein
catabolic process”, “microtubule bundle formation”, “nega-
tive regulation of supramolecular fiber organization”, “viral
genome replication”, “protein localization to microtubule
cytoskeleton”, “ribonucleoprotein complex localization”,
and “pyruvate metabolic process” (Fig. 6).

Discussion
Liver plays a central role in supporting the anabolic
capacity of the mammary gland. Net hepatic glucose
production (3.1 kg/d) of mid-to-late lactating cows is
able to meet glucose required for milk lactose syn-
thesis and maintenance [15, 16]. In addition, liver plays
dominant roles in determining the ultimate quantity and
pattern of metabolites available for milk synthesis [16].
Metabolic function and, thus, energy metabolism of
liver responds to a variety of environmental stimuli in-
cluding fasting or level of feed intake [17], diet compos-
ition and productive (physiological) state [15].
Although a number of studies have been conducted to
assess effects of low-quality forage resources on lacta-
tion performance and rumen fermentation [2, 4, 7, 8],
there are limited data on the response by important or-
gans such as the liver. Thus, we used transcriptomics
and bioinformatics in an effort to better capture
genome-wide transcriptional responses of dairy liver to
feeding low-quality forage (CS) versus high-quality for-
age (MF).

Fig. 6 Gene Ontology Biological Process (GO_BP) annotation for the whole co-expression network. The size of the nodes reflects the statistical
significance of each term. Larger the node size, smaller the P-value. Different node colors represent different functional groups. The name of each
group is given by the most significant term of the group. The nodes are grouped by similarity of their associated genes
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Feeding CS reduces Milk performance
Consistent with a previous study where milk yield of
cows fed more alfalfa than those fed corn stover (P =
0.07) decreased [2], in this study milk yield was lower
with CS than MF (Table 1). In addition, milk protein
content and yield, milk fat yield, and lactose yield were
all decreased by CS compared with MF (Table 1).
Clearly, a large portion of the decreased milk perform-
ance in this study was mainly attributed to the lower
DMI of CS compared with MF cows [18]. The study of
Zhu et al. (2013) showed that corn stover compared with
alfalfa led to lower OM degradability in the rumen (53.2
vs. 47.8%, P = 0.01) [2], suggesting longer retention time
of undegraded fiber. Thus, the lower DMI of CS vs. MF
cows in this study was likely caused by excess bulk in
the rumen.

Pathways in liver were extensively inhibited in CS cows
vs. MF cows
In this study, all categories and subcategories of the KEGG
pathways in liver were overall inhibited to different extents
in CS vs. MF cows (Fig. 1). Furthermore, among the top
20 impacted pathways, in liver tissue of CS compared with
MF cows uncovered by the DIA, most of the pathways
were inhibited (Fig. 2). Data for inhibited pathways indi-
cated an overall downregulated metabolism in liver of CS
compared with MF cows, which agrees with results of Sun
et al. (2015) in which ruminal fluid and serum metabolite
concentrations decreased with a low-forage compared
with high-forage diet [4]. Thus, together the data imply a
decreased overall metabolism level when low-quality
forage is fed.

Low-quality forage inhibited glycan biosynthesis and
metabolism
As shown in Fig. 1, the subcategory “Glycan Biosynthesis
and Metabolism” was the most impacted and was overall
inhibited. Furthermore, among the top 20 most im-
pacted pathways, approximately 25% were related to
“Glycan Biosynthesis and Metabolism” with the pathway
of “Glycosphingolipid biosynthesis – globo series” being
the most impacted (Fig. 2). Glycans are simple or com-
plex polymers composed of monosaccharides [19], and
mediate a wide variety of biological processes including
cell growth and differentiation, cell−cell communication,
immune response, pathogen interaction, and intracellu-
lar signaling events [20]. At a molecular level, glycans
are often the first points of contact between cells, and
they function by facilitating a variety of interactions both
in cis (on the same cell) and in trans (on different cells)
[21]. Thus, the high perturbation of glycan biosynthesis
and metabolism in this study suggests a potential effect
of low-quality forage on hepatocyte communication or
growth and differentiation, which was also validated by

the results of DAVID and ClueGO where the biological
process of “cell-cell adhesion” and “positive regulation of
multicellular organism growth” were significantly enriched
among the downregulated DEG (Fig. 3 and Fig. 4).
Among the top 20 impacted pathways, “Glycosphingo-

lipid biosynthesis – globo series” and “Glycosphingolipid
biosynthesis – lacto and neolacto series” were highly
inhibited in CS vs. MF cows (Fig. 2). In addition, “Glyco-
sphingolipid biosynthesis – ganglio series” was also
highly impacted, but the change in direction of the DEG
involved in the pathway was not consistent, which is
embodied in the modest direction of the impact (Fig. 2).
However, it was evident that glycosphingolipid biosynthesis
metabolism was overall inhibited by CS vs. MF in this
study. Glycosphingolipids (GSLs) comprise a heterogeneous
group of membrane lipids formed by a ceramide backbone
covalently linked to a glycan moiety [22], and are classified
based on their carbohydrate structure into six major series
in vertebrates including gangliosides, lacto-, neolacto-,
muco-, isoglobo-, and globo-series GSL [23]. D’Angelo
et al. (2013) compiled published data indicating that GSL
could modulate various aspects of the biology of the cell
including apoptosis, cell proliferation, endocytosis, intracel-
lular transport, cell migration and senescence, and inflam-
mation [22]. Zhang et al. (2004) concluded that specific
changes in composition and metabolism of GSL occur dur-
ing cell proliferation, cell cycle phases, brain development,
differentiation, and neoplasia in various cell types [24]. In
addition, GSL form “microdomains” or “rafts” within the
cell membrane, which move within the fluid bilayer as
platforms for the attachment of proteins during signal
transduction and cell adhesion [24]. Thus, in this study, the
inhibited glycosphingolipid biosynthesis metabolism seems
to offer further proof that the communication or growth
and differentiation of hepatocytes was potentially inhibited
by the low-quality forage diet. The significance of the
perturbation at a deeper level could not be ascertained by
the results of the present study.
Inconsistent with the above 4 pathways, “Glycosami-

noglycan biosynthesis - keratan sulfate” was highly acti-
vated in CS cows vs. MF cows (Fig. 2). Keratan sulfate
(KS) is one of the glycosaminoglycans (GAG), occurring
as keratan sulfate proteoglycans on the cell surface and
in the extracellular matrix [25]. Pomin (2015) concluded
that GAG displays anti-inflammatory functions by
activating leukocyte rolling along the endothelial surface
of inflamed sites and also regulating chemokine action
on leukocyte guidance, migration and activation [26].
The study of Vailati-Riboni et al. (2016) in transition
cows demonstrated that feeding at 125% of nutrient
requirements activated hepatic GAG synthesis pathways
in under-conditioned cows, while it inhibited it in
optimally-conditioned cows [27]. Thus, it was suggested
that overfeeding of fatter cows may decrease the
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synthesis of anti-inflammatory compounds and conse-
quently induce some detrimental effects [27]. Taken to-
gether, previous and present data suggest activation of
“Glycosaminoglycan biosynthesis - keratan sulfate” in re-
sponse to feeding CS as an anti-inflammatory response.
This idea was also validated by DAVID analysis where
“complement activation” and “Complement and co-
agulation cascades” were significantly enriched with
up-DEG (Fig. 3). However, the underlying mechanisms
could not be ascertained from results of the present
study.
The biosynthesis of KS is often markedly altered in re-

sponse to metabolic, pathologic, or developmental changes
in tissues [28]. Davies et al. (1999) suggested that the ex-
pression of keratan sulfate is down-regulated in migrating
corneal endothelial cells, while abundance on the cell
surface returns when cells cease migration [29]. Thus, this
suggests that KS has an anti-migration character. However,
the anti-adhesive properties of KS were previously reviewed
by Caterson and Melrose (2018) and Funderburgh (2000)
[28, 30]. Thus, the exact function of KS as it relates to cell-
cell adhesion in hepatocytes is difficult to ascertain with the
available data. In the present study, the paradoxical effect of
CS vs. MF on cell adhesion was also highlighted by results
of DAVID, where both “cell-cell adhesive” and “negative
regulation of cell-matrix adhesion” were significantly
enriched by the down- and up-regulated DEG, while
“cell adhesive” was significantly enriched among the
up-regulated DEG (Fig. 3).

Low-quality forage inhibits amino acid metabolism
Metabolism of amino acids was overall inhibited by low-
quality forage (Fig. 1). Among the top 20 impacted
pathways, “Arginine biosynthesis”, “Selenoamino acid
metabolism”, “beta-Alanine metabolism”, and “Tryptophan
metabolism” were all inhibited (Fig. 2). Similar results were
also revealed by ClueGO where “amide biosynthesis
process” and “positive regulation of proteasomal protein
catabolic” were significantly enriched by downregulated
DEG (Fig. 4). Sun et al. (2015) studied metabolite profiles
from four biofluids (rumen fluid, milk, serum, and urine) of
cows fed different forage resources using metabolomics,
with 55, 8, 28, and 31 significantly different metabolites
identified in the rumen fluid, milk, serum, and urine, re-
spectively [4]. These metabolites were involved in glycine,
serine, and threonine metabolism; tyrosine metabolism; and
phenylalanine metabolism [4]. Sun et al. (2016) in a subse-
quent urine metabolomics analysis demonstrated that Tyr
metabolism and Phe, Tyr and Try biosynthesis pathways
had the most variation when corn stover replaced alfalfa
hay [31]. The study of Wang et al. (2018) showed that cows
fed CS had lower absorbable Leu in the duodenum, which
suggested this diet led to shortage of microbial Leu [8]. Sun
et al. (2015) demonstrated that, under different quality

forage resources, the concentrations of Phe and Tyr in
rumen fluid exhibited lower fold-change values (0.54 and
1.19, respectively) than those in the serum (1.01 and 1.34,
respectively), which implied that Phe and Tyr may be uti-
lized more in the liver of cows fed high-quality forage than
compared with low-quality forage [4]. Thus, we speculate
that the inhibition of amino acid metabolism in CS vs. MF
cows in this study was suggestive of an inhibited amino acid
utilization in liver in the cows fed low-quality forage diet.

Co-expression network analysis
In the co-expression network, degree represents the
number of connections of a node in a network and be-
tweenness centrality is the number of times that a path
passes through the node, which represents the influence
this node exerts over other nodes and their potential in-
teractions in the network [32]. Thus, both degree and
betweenness centrality are measures of the function of a
node in network connectivity [33]. As shown in Fig. 5,
the co-expression network revealed 7 genes (FAM210A,
SLC26A6, FBXW5, EIF6, ZSCAN10, FPGS, ARMCX2)
with higher degree and betweenness centrality (ranking
in top 7, Additional file 5) than others, indicating a more
critical role played by them in the network.
Among the 7 genes, FAM210A (a mitochondrial gene)

which had the highest degree has a crucial role in
regulating bone structure and function [34]. SLC26A6
belongs to the solute carrier 26 family, and encodes a
protein involved in transporting chloride, oxalate, sulfate
and bicarbonate [35–39]. Thus, the inhibited expression
of SLC26A6 indicated a decreased transporting ability of
chloride, oxalate, sulfate and bicarbonate in liver of CS
cows (Fig. 5). FBXW5 is a the TSC2 binding receptor of
CUL4 E3 ligase complex [40]. Hu et al. (2008) demon-
strated that FBW5 (FBXW5) promotes ubiquitination of
tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase,
and depletion of FBW5 stabilizes TSC2 [41]. Ha et al.
(2014) demonstrated that intracellular accumulation of
TSC2 inhibits the activity of mTOR and increase
autophagy [40]. Thus, in the present study, the downreg-
ulated FBXW5 seems to imply an intracellular accumula-
tion of TSC2 and consequently an increase in autophagy
in liver of CS vs. MF cows. EIF6 is eukaryotic translation
initiation factor. Depletion of eIF6 (using specific
siRNA-mediated knockdown) in Mz-ChA-2 and TFK-1
cell lines inhibit cell proliferation and induced apoptosis
[42], while EIF6 over-expression increases the motility
and invasiveness of cancer cells [43]. However, in this
study, “positive regulation of apoptotic process” was
significantly enriched by downregulated DEG implying
that apoptosis was not induced by low-quality forage diet
(Fig. 4). In addition, “protein folding” was significantly
enriched by downregulated DEG (Fig. 4) and the pathway
“Aminoacyl-tRNA biosynthesis” was highly inhibited by
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CS vs. MF. Thus, combined with the inhibited EIF6, the
results of the present study suggested an inhibited protein
synthesis in liver of cows fed low-quality forage.
FPGS is a gene encoding the folylpolyglutamate synthe-

tase enzyme. This enzyme has a central role in establishing
and maintaining both cytosolic and mitochondrial folylpo-
lyglutamate concentrations and, thus, is essential for folate
homeostasis and the survival of proliferating cells [44, 45].
Folate plays an essential role in nucleotide biosynthesis and
biological methylation reactions as a methyl donor [46, 47].
Consistent with the downregulation of FPGS (Fig. 5), in this
study, “Folate biosynthesis” was also inhibited by CS vs. MF
(Fig. 2). Taken together, the results of the present study
suggested a decrease in folate homeostasis in cows fed low-
quality forage. Thus, the downregulation of “nucleotide-ex-
cision repair” may be a downstream cascade reaction due
to decreased folate homeostasis (Fig. 3). In addition, the
downregulated ZSCAN10 and ARMCX2 with high degree
and betweenness centrality were also unraveled by co-
expression network analysis (Fig. 5), but the significance of
the perturbation was unclear.
Annotation information analysis for the genes within

the co-expression network was performed using ClueGO
and is shown in Fig. 6. A potential explanation for the per-
turbation of all these biological processes is beyond the
scope of the present study. However, it is noteworthy that
almost all these biological processes are energy-requiring
except for “pyruvate metabolic process”, which is highly

associated with energy metabolism. Furthermore, “pyru-
vate metabolic process” was also significantly enriched by
the whole downregulated DEG in CS vs. MF (Fig. 4), indi-
cating that energy metabolism in liver was inhibited by
low-quality forage. Taken together, the inhibited energy
metabolism unraveled by this study was suggestive of a
central role in the whole metabolic perturbation in liver.
The DMI of CS cows was indeed 4 kg/d lower than the
MF cows, which may account at least in part for the
decreased energy metabolism in liver in CS vs. MF.

Conclusion
As in previous studies, feeding a low-quality forage reduces
production performance, but also leads to marked alter-
ations in the hepatic transcriptome. Among the unique bio-
logical pathways identified through bioinformatics analysis,
glycan biosynthesis and metabolism and amino acid metab-
olism were highly inhibited when the low-quality forage diet
was fed. Biological processes related to cell-cell adhesion,
multicellular organism growth, and amino acid and protein
metabolism also were downregulated. Co-expression net-
work analysis indicated that the downregulated genes related
to autophagy and translation played critical roles in the
network. In addition, pyruvate metabolic process and other
energy-requiring biological processes were enriched in the
co-expression network. Collectively, results indicated that,
compared to high-quality forage diet, low-quality forage
could inhibit several basic cellular functions of the liver. Fur-
thermore, the results of the present study provide an insight
into the metabolic response in the liver to different-quality
forage resources. As such, the data can help develop favor-
able strategies to improve the utilization of corn stover in
China.

Methods
Experiment animals and management
The field experiment of this study was performed in
Beijing ZhongDi Dairy Farm (Beijing, China) and the
cows used in this study were all from this farm. Thirty-

Table 2 Ingredients composition of experimental diets

Ingredient (% of DM) MF CS

Alfalfa hay 17.30 –

Corn silage 18.77 –

Corn straw – 36.07

Soybean meal 11.29 11.29

Rapeseed meal 4.19 4.19

Cottonseed meal 2.13 2.13

Extruded soybeans 2.06 2.06

Beet pulp 4.16 4.16

Cottonseed fuzzy 10.44 10.44

Corn 25.55 25.56

EB100a 1.14 1.14

XPb 0.33 0.33

Limestone 0.74 0.74

Salt 0.46 0.46

Premixc 0.53 0.53

Total 100 100
aMainly saturated free fatty acid fat supplement.
bYeast products.
cContaining (per kilogram dry matter of premix): vitamin A 250,000 IU, vitamin
D 65,000 IU, vitamin E 2100 mg, ferrum 400mg, copper 540mg, zinc 2100 mg,
manganese 560 mg, iodine 35 mg; cobalt 68 mg

Table 3 Chemical composition of experimental diets

Items (% of DM) MF CS

DM 93.1 92.9

CP 18.1 16.1

NDF 35.9 47.6

ADF 25.2 30.3

EE 5.6 4.7

Starch 31.1 30.1

Ca 0.75 0.67

P 0.42 0.36

NEL, Mcal/kg of DMa 1.67 1.56
acalculated according to NRC (2001)
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two healthy lactating Holstein cows (body weight, 550 ±
10 kg; days in milk, 55 ± 15; daily milk yield, 31 ± 2.30 kg,
primiparous) were selected and divided into two groups
based on average daily milk yield, body weight and days
in milk. The two groups were randomly assigned to two
diets: (i) mixed forage diet (MF), and (ii) corn stover diet
(CS). Each treatment included 16 cows (n = 16). The two
diets were formulated to meet their nutrient require-
ment (net energy lactation) according to NRC (2001)
[3]. The ingredients and the chemical composition of
the two experimental diets are shown in Table 2 and
Table 3. Forage-to-concentrate ratio (F:C) of the two
diets were all 64:36. The diets were mixed daily and fed
ad libitum as total mixed ration. The diet was supplied
thrice per day at 07:00, 14:00, and 20:00 h in an equal
amount that allowed for 5–10% orts. Cows were milked
thrice daily at 07:00, 14:00, and 20:00 h and had ad
libitum access to water. The total duration of the experi-
ment lasted for 14 weeks, including an acclimatization
period of two weeks. All the two group cows were
fed MF diet in acclimatization period and randomly
allocated to MF or CS in trail period.

Sample collection
Dry matter intake of each cow was recorded using the
RIC system (Hokofarm Group, Netherlands). The of-
fered total mixed rations were sampled twice per week,
and the samples were pooled for each week and analyzed
for DM, CP, NDF, ADF, EE, Starch, Ca, and P content
as previously described [48]. Five cows were randomly
selected from each treatment for liver tissue collection.
The biopsy was conducted at the end of the 14 weeks as
described by Gao et al. (2019) and Bu et al. (2017) [49, 50].
Tissue samples were washed with PBS buffer prepared
using RNAase-free water, and then stored in liquid nitrogen
immediately until RNA extraction. Health was monitored
post-surgery by recording rectal temperature, milk yield,
and feed intake daily for 7 days. Surgical clips were removed
7 days post-biopsy and the cows were placed back to their
original barns in the farm to continue rear.

RNA extraction and sequencing
Total RNA was extracted with TRIzol reagent (Life tech-
nologies, US, Cat#74106) according to the manufacturer’s
protocol. Integrity and concentration of total RNA were
then assessed using a 2100 Bioanalyzer (Agilent Technolo-
gies, US) with the RNA 6000 Nano Kit (Agilent Technolo-
gies, US). Complementary DNA (cDNA) was synthesised
and used to construct a library with the NEBNext Ultra
RNA Library Prep Kit (NEB, E7530). The libraries were
sequenced on the Illumina HiSeq2000 platform via 2 × 50-
bp paired-end sequencing at BGI Tech Solutions Co., Ltd.
(Shenzhen, China). The RNA-Seq, libraries were sequenced
at BGI Tech Solutions Co., Ltd. (Shenzhen, China).

Quality analysis, mapping, and Transcriptome assembly
The reads containing adapter, poly-N and low-quality reads
in the raw data were removed to obtain the clean reads. All
the downstream analyses were based on the clean data with
high quality. Reference bovine genome and gene model an-
notation files were downloaded from (ftp://ftp.ensembl.org/
pub/release-89/fasta/bos_taurus/dna/) and (ftp://ftp.ensembl.
org/pub/release-89/gtf/bos_taurus) respectively. Index of the
reference genome was built using Bowtie2 v2.2.8. HISAT2
(v2.0.4) was used to align paired-end clean reads to the refer-
ence genome [51]. HISAT2 was run with ‘--rna-strandness
RF’, other parameters were set as default. The StringTie
(v1.3.1) was used to assemble the mapped reads of each
sample in a reference-based approach [52].

Statistical analysis
Data analysis of milk performance and milk composition
was performed using the GLM model in SAS (8.2; SAS
Institute Inc., Cary, NC), with treatment used as fixed
effect, cow used as random effect, and day used as
repeated effect.

Analysis of differently expressed genes (DEG)
The mapped reads count table of each gene and each
sample was used for the analysis of DEG with DESeq2
package (1.26.0) in R (3.6.1) as the standard workflow
instructed [53]. The complete dataset of DEG was in
Additional file 1.

GO and KEGG enrichment analysis
Dynamic Impact Approach (DIA) was used to perform
the analysis of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways [54]. The dataset including
Entrez Gene ID, FDR (adjusted P-value, Padj), expres-
sion ratio, and P-value was uploaded and Entrez Gene
ID were used as background. Adjusted P-value < 0.05
were used as cut-off. The output of DIA was exported in
Additional file 2.
The enrichment analysis of various database including

KEGG pathways, Gene Ontology Biological process
(GO_BP), Cellular components (GO_CC) and Molecular
function (GO_MF) was run by Database for Annotation,
Visualization and Integrated Discovery (DAVID) v6.7
[55]. For this analysis, all the annotated transcripts that
were detected (Entrez Gene ID) were used as background
and three datasets were analyzed: 1) up-regulated differ-
ently expressed genes (DEG, log2 fold change > 0, Padj <
0.05) by CS vs MF; 2) down-regulated DEG (log2 fold
change < 0, Padj < 0.05) by CS vs MF; and 3) both up- and
down-regulated DEG (Padj < 0.05) of CS vs MF. Results
were downloaded using both Functional Annotation Chart
and Functional Annotation Clustering (Additional file 3).
The enrichment analysis of Gene Ontology Biological
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process was also conducted and visualized using ClueGO
(2.5.5) a plug-in of Cytoscape (3.7.2) [56].

Co-expression network construction and functional
annotation
Read counts of each gene and each sample were normal-
ized by median normalization using the EBSeq (3.10) R
package. The correlation and correlation significance of
every pair DEG (Padj < 0.01) was calculated using loga-
rithmic matrix of read counts with the R package
“psych” (1.8.12). Pearson was chosen as the correlation
method. Then, the table containing the statistically sig-
nificant correlations across the whole data set for every
pair of DEGs was generated (Additional file 4). R pack-
age “igraph” (1.2.4.1) was used to calculate network sta-
tistics (degree and betweenness centrality for each node)
as described by Contreras-Lopez et al. (2018) [33]. The
dataset is available in Additional file 5. The dataset in-
cluding correlation of the DEGs, the degree and
betweenness centrality of the nodes, and the log2 fold
change of the DEGs were uploaded to Cytoscape. The
gene symbols were set as the node’s identifiers. The
correlation, correlation significance, degree and be-
tweenness, and log2 fold change were mapped to the
edge color, edge with, node size, and node fill color
respectively. The functional annotation analysis of the
network was performed using the ClueGO application.
The network and functional annotation results of the
network were shown in Fig. 5 and Fig. 6.
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