
 

Diagnostics 2020, 10, 305; doi:10.3390/diagnostics10050305 www.mdpi.com/journal/diagnostics 

Article 

Characterization of Stem-like Circulating Tumor 
Cells in Pancreatic Cancer 

Lei Zhu 1, Barbara Hissa 1, Balázs Győrffy 2,3, Johann-Christoph Jann 4, Cui Yang 1,  

Christoph Reissfelder 1,5 and Sebastian Schölch 1,5,* 

1 Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg Univer-

sity, 68167 Mannheim, Germany; Lei.Zhu@medma.uni-heidelberg.de (L.Z.);  

Barbara.Hissa@medma.uni-heidelberg.de (B.H.); Cui.Yang@umm.de (C.Y.);  

christoph.reissfelder@umm.de (C.R.) 
2 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary;  

gyorffy.balazs@yahoo.com 
3 TTK Cancer Biomarker Research Group, Institute of Enzymology, H-1117 Budapest, Hungary 
4 Department of Medicine III, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg  

University, 68167 Mannheim, Germany; Johann-Christoph.Jann@medma.uni-heidelberg.de 
5 German Cancer Consortium (DKTK) & German Cancer Research Center (DKFZ),  

69120 Heidelberg, Germany 

* Correspondence: sebastian.schoelch@medma.uni-heidelberg.de; Tel.: +49-621-383-5152 

Received: 17 February 2020; Accepted: 13 May 2020; Published: 15 May 2020 

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the fourth most frequent cause of death from 

cancer. Circulating tumor cells (CTCs) with stem-like characteristics lead to distant metastases and 

thus contribute to the dismal prognosis of PDAC. Our purpose is to investigate the role of stemness 

in CTCs derived from a genetically engineered mouse model of PDAC and to further explore the 

potential molecular mechanisms. The publically available RNA sequencing dataset GSE51372 was 

analyzed, and CTCs with (CTC-S) or without (CTC-N) stem-like features were discriminated based 

on a principal component analysis (PCA). Differentially expressed genes, weighted gene co-expres-

sion network analysis (WGCNA), and further functional enrichment analyses were performed. The 

prognostic role of the candidate gene (CTNNB1) was assessed in a clinical PDAC patient cohort. 

Overexpression of the pluripotency marker Klf4 (Krüppel-like factor 4) in CTC-S cells positively 

correlates with Ctnnb1 (β-Catenin) expression, and their interaction presumably happens via pro-

tein–protein binding in the nucleus. As a result, the adherens junction pathway is significantly en-

riched in CTC-S. Furthermore, the overexpression of Ctnnb1 is a negative prognostic factor for pro-

gression-free survival (PFS) and relapse-free survival (RFS) in human PDAC cohort. Overexpression 

of Ctnnb1 may thus promote the metastatic capabilities of CTCs with stem-like properties via ad-

herens junctions in murine PDAC. 

Keywords: pancreatic cancer; PDAC; circulating tumor cells; CTC; stem cells; stem-like; stemness; 

adherens junctions; epithelial-mesenchymal transition; EMT 

 

1. Introduction 

With 57,000 new cases and 46,000 deaths annually, pancreatic ductal adenocarcinoma (PDAC) 

is the 9th most frequent malignant disease in males and 8th most prevalent in females and the 4th 

most frequent cause of death in both genders [1]. At the time of diagnosis, only a fraction of patients 

are amenable to surgical resection of the tumor. However, even patients who undergo complete sur-

gical resection are at a high risk of either local or systemic recurrence [2]. 

In order to study the molecular mechanisms of pathogenesis and metastasis of pancreatic cancer, 

several genetically induced mouse models (GEMMs) have been established in recent decades [3–6]. 
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The most prominent and best-characterized model is the LSL-KrasG12D, LSL-Trp53R172H, Pdx1-Cre (KPC) 

mouse model [6]. 

It is now well established that circulating tumor cells (CTCs) are an integral part of the metastatic 

cascade in malignant disease [7–18]. CTCs are shed from the primary tumor, survive in circulation, 

and ultimately colonize distant organs where they establish clinically overt metastases [9,16]. How-

ever, while thousands or millions of CTCs are shed into the bloodstream over time, the number of 

metastases is several orders of magnitude lower [19]. Therefore, it can be assumed that only a small 

fraction of CTCs are actually tumorigenic and thus clinically relevant. In order to achieve the invasive 

phenotype required to leave the primary tumor bulk and enter circulation, CTCs from epithelial tu-

mors undergo a process called epithelial–mesenchymal transition (EMT). During this process, the 

cells acquire mesenchymal properties (e.g., migratory capability) while downregulating epithelial 

traits [20,21]. This process is reverted during mesenchymal-epithelial transition (MET). As both EMT 

and MET dynamically fluctuate, CTCs in circulation exhibit a high degree of plasticity and represent 

a heterogeneous population consisting of epithelial, mesenchymal, and intermediary cells [20,22]. 

In a previous study, CTCs from the GEMM (LSL-KrasG12D, LSL-Trp53flox/flox or flox/+, Pdx1-Cre) were 

isolated and submitted to single-cell RNA sequencing. The raw data of this experiment was released 

to the Gene Expression Omnibus (GEO) database, and it is available for analysis [23]. In previous 

studies from our own group, we were able to demonstrate that, apart from immune evasive capabil-

ities, CTCs also possess stem cell properties [13,17]. The main goal of this study was therefore to 

investigate the role of stem cell properties in murine CTCs of PDAC and to further characterize CTCs 

with stem cell properties. 

2. Results 

Details regarding the study workflow are depicted in Figure 1. 

 

Figure 1. Illustration of the workflow in the integrative bioinformatics analysis. Data set GSE51372 

from the Gene Expression Omnibus (GEO) database was used, which contains 75 murine pancreatic 

CTCs single-cell sequencing datasets. After filtering out three samples with low quality, we further 

excluded low expression genes, and EdgR transformed the remaining 72 samples. CTCs with stem-

like features (CTC-S) and CTC with non-stem-like features (CTC-N) were defined based on the prin-

cipal component analysis (PCA) of the top 3000 most variable genes. We performed weighted gene 
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co-expression network analysis (WGCNA) on these 3000 genes, while all read counts of 11,931 genes 

were used to analyze the differentially expressed genes. Further functional enrichment analysis, in-

cluding the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Gene Ontology (GO) as-

pects on both differentially expressed genes and WGCNA results was performed. The cytoHubba 

plugin of Cytoscape 3.5.1 was employed to identify hub genes. Candidate pathways (adherens junc-

tion) and genes (Ctnnb1) were identified. The clinical value of KLF4 and CTNNB1 was validated in 

the TCGA (The Cancer Genome Atlas) pancreatic adenocarcinoma (PDAC) cohort. The workflow was 

plotted using ProcessOn (available online: https://www.processon.com/diagrams, accessed on 23 

March 2020). 

2.1. Pancreatic CTCs Can Be Clustered into Stem-Like and Non-Stem like Categories 

After pre-processing, we kept 72 samples for the following study, and 11,931 genes were ob-

tained (Figure S1A,B). In order to classify CTCs into subgroups, the top 3000 genes that presented the 

highest variability in expression were chosen for the principal component analysis (PCA) [19,24,25]. 

From these 3000 genes, epithelial (Epcam, Krt7, Krt8, Krt18, and Krt19) [23], mesenchymal (Fn1, 

S100a4 and Vim) [26], stemness/pluripotency markers (Aldh1a1, Aldh1a2, Cd24a, Cd44, and Klf4) 

[25,27,28] and the proliferation marker Mki67 [29] were included in subsequent analyses. 

All 72 individual CTCs could be divided into three clusters (Figure S2A, B). However, this study 

focuses on whether the CTCs have stem-like features or not, a dichotomous classification; therefore, 

the CTCs were divided into clusters based on stem-like features. According to the PCA loading plot 

(Figure 2A), the cluster located in the first quadrant (blue dots) exhibited stemness markers and was 

defined as CTC-S (CTCs with stem-like features) (Figure 2B). The other two clusters were merged 

(red dots) and named CTC-N (CTC without stemness features. The correlation heatmap with hierar-

chical clustering showed a similar result (Figure 2C). 



Diagnostics 2020, 10, 305 4 of 21 

 

 

Figure 2. Defining the CTC-S and CTC-N subgroups. (A) Principal component analysis (PCA) loading 

plot of the marker set. The x and y axes represent the principal components 1 (PC1) = 16.6% variance 

and PC2 = 6.1% variance, respectively. 3 of the 5 stem markers (Aldh1a1, Aldh1a2, and Klf4) are lo-

cated in the first quadrant, indicating that stem markers tend to correlate with both PC1 and PC2 

positively. The PCA loading data were download from the ClustVis and visualized by the imageGP 

(available online: http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html,accessed on 

23 April 2020). (B) PCA scores plot of 72 samples. All samples were divided into three clusters. The 

cluster located in the first quadrant was defined as CTCs with stem-like features (CTC-S) since they 
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present with stem markers PCA loadings in (A), as the other two clusters were combined and defined 

as CTC with non-stem-like features (CTC-N). The corresponding ellipses were plotted based on a 95% 

probability from the same group. (C) The correlation heatmap was visualized by MORPHEUS (avail-

able online: https://software.broadinstitute.org/morpheus/, accessed on 7 March 2020). We chose the 

average linkage method to perform the hierarchical clustering. The heatmap demonstrates the distinct 

subgroups of CTC-S and CTC-N. The colors of the square matrices illustrate the Pearson’s correlation 

coefficient, with red indicating a strong correlation and green a weak correlation. All samples are 

listed in the same order in both horizontal and vertical axes. 

2.2. Both Epithelial and Mesenchymal Markers are Expressed on CTC-S 

To evaluate each cell within their respective subgroups in more detail, we expanded the marker 

pool, as not all markers of interest were listed in the 3000 most variable genes. EMT markers (Snai1, 

Snai2, Twist1, Zeb1, and Zeb2), epithelial markers (Cdh1, Egfr, Epcam, Krt7, Krt8, Krt18, and Krt19) [23], 

mesenchymal markers (Cdh2, Fn1, Itga5, Sdc1, S100a4, and Vim) [20,23], pancreatic cancer stemness 

markers (Abcg2, Aldh1a1, Aldh1a2, Cd24a, Cd44, Cxcr4, Met, Prom1, Klf4, Nanog and Sox2) [30,31], and 

a proliferation marker (Mki67) were included to plot the heatmap (Figure 3A).  

A high degree of expression heterogeneity was observed for most markers. Compared with 

CTC-N, CTC-S cells demonstrated an increased expression of epithelial markers such as Egfr, Epcam, 

and keratins. Parallelly, the mesenchymal markers Fn1 [log2(fold change) (FC) = 4.07, false discovery 

rate (FDR) = 1.42 × 10−5] and Vim (log2FC = 6.37, FDR = 5.89 × 10−10) were up-regulated in the CTC-S 

group, resulting in a phenotype with both epithelial and mesenchymal characteristics. Notably, stem-

ness transcripts showed variable expression, while Aldh1a2 (log2FC = 4.98, FDR = 1.61 × 10−8) and Klf4 

(log2FC = 9.41, FDR = 1.45 × 10−21) were enriched in CTC-S, Cd44 was significantly down-regulated 

(log2FC = −2.57, FDR = 0.012) (Figure 3A). 

2.3. The Adherens Junction Pathway is Functionally Enriched in CTC-S 

Compared with CTC-N, 1475 genes were significantly up- and 247 significantly down-regulated 

in the CTC-S group (Figure S3A, B). 

We next constructed a protein–protein interaction (PPI) network of up-regulated genes by 

STRING (available online: https://string-db.org/, accessed on 19 August 2019) [32], establishing 1412 

nodes and 6695 interactions (Figure not shown). We used the cytoHubba plugin in Cytoscape to nar-

row this number down to 43 genes, which were subsequently defined as hub genes. 

The biological domains of biological process (BP), cellular component (CC), and molecular func-

tion (MF) were utilized to describe the biological domain of genes enriched in the CTC-S group. The 

cellular components’ anchoring junction [Gene Ontology (GO): 0070161, fold enriched = 3.56, FDR = 

1.55 × 10−40] and adherens junction (GO: 0005912, fold enriched = 3.53, FDR = 9.73 × 10−39) were signif-

icantly functionally enriched. The enrichment of cell adhesion molecule binding (GO: 0050839, fold 

enriched = 3.34, FDR = 6.48 × 10−31) was observed in the MF domain (Figure 3B). 

While GO enrichment analysis focuses on the functions of the genes, the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway analysis mainly reflects the interaction network and the sig-

naling pathways of the requested genes. In this analysis, several signaling pathways were signifi-

cantly enriched, including adherens’ junction (KEGG: 04520, fold enriched = 3.42, FDR = 1.47 × 10−5) 

and fluid shear stress and atherosclerosis pathways (KEGG: 05418, fold enriched = 2.61, FDR = 2.05 × 

10−5) (Figure 3B). 
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Figure 3. Differentially expressed genes between CTC-S and CTC-N groups. (A) MORPHEUS-gener-

ated heatmap showing the expression of the marker set in CTC-S and CTC-N groups. The maximum 

and the minimum values in each row are displayed red and green, respectively. The marker names, 

groups, log2(Fold Change (FC)) values, and false discovery rate (FDR) values were listed on the right 

side. (B) The functional enrichment analysis of up-regulated genes in the CTC-S subgroup was visu-

alized by imageGP (available online: http://www.ehbio.com/ImageGP/index.php/Home/Index/in-

dex.html, 23 April 2020), top 5 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

ways, Gene Ontology (GO) terms for biologic processes (BP), cell components (CC) and molecular 

functions (MF), each aspect was shown (fold enriched >2 and FDR <0.010). 

In order to gain deeper insight into the molecular biology of the CTC subsets, we used a 

weighted gene co-expression network analysis (WGCNA) in this study. 

After network construction (Figure S4A, B), we identified five gene co-expression modules (blue, 

brown, green, turquoise, and yellow) with sizes between 67 and 1384 genes in the 72 samples (Figure 
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4A). Both brown and turquoise modules correlated with stemness (correlation coefficient >0.7, ad-

justed p-value <0.001), but the results of the brown module were more significant (correlation coeffi-

cient = 0.95, adjusted p-value = 3.6 × 10−37). 

We therefore used the brown module in the functional enrichment analysis. In the brown mod-

ule, 645 genes were functionally enriched in the adherens junction pathway (KEGG: 04520, fold en-

riched = 3.71, FDR = 3.59 × 10−3), which is consistent with the results of the analysis of the differentially 

expressed genes. In addition, anchoring junction (GO: 0070161, fold enriched = 3.27, FDR = 2.22 × 

10−13), adherens junction organization (GO: 0034332, fold enriched = 4.29, FDR = 8.11 × 10−3) and reg-

ulation of adherens junction organization (GO: 1903391, fold enriched = 13.11, FDR = 8.12 × 10−3) were 

all significantly enriched again (Figure 4B). 
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Figure 4. Weighted gene co-expression network analysis (WGCNA) of 72 pancreatic CTCs. (A) The 

cluster dendrogram of 3000 genes, five modules (blue, brown, green, turquoise, and yellow), were 

identified. The brown module correlates with the stem trait most significantly (r = 0.95, adjusted p-

value = 3.6 × 10−3). (B) The functional enrichment analysis of genes in the brown module (generated 
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by imageGP, available online: http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html, 

accessed on 23 April 2020), top 5 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

ways, Gene Ontology (GO) terms for biological processes (BP), cell components (CC) and molecular 

functions (MF) are shown [fold enriched > 2 and false discovery rate (FDR) <0.010]. 

To identify the pathways with the strongest influence on the CTC-S phenotype, we intersected 

functional enrichment pathways from the results of differentially expressed genes and WGCNA. This 

resulted in six pathways, including focal adhesion (KEGG: 04510), adherens junction (KEGG: 04520), 

ECM-receptor interaction (KEGG: 04512), AGE-RAGE signaling pathway in diabetic complications 

(KEGG: 04933), proteoglycans in cancer (KEGG: 05205) and fluid shear stress and atherosclerosis 

(KEGG: 05418) (Figure 5A). Since adherens junction organization (GO: 0034332) was also significantly 

enriched in the GO: BP aspect of functional enrichment analysis of both differentially expressed genes 

and WGCNA, we identified the adherens junction as a pathway of interest in CTC-S. In addition, 

double enriched GO terms, such as the regulation of adherens junction organization (GO: 1903391), 

cell–cell junction (GO: 0005911), and cell–cell junction assembly (GO: 0007043) provide further evi-

dence that adherens junctions are biologically relevant in the CTC-S group. 

In order to identify the key genes in the adherens junction pathway and the entire PPI network., 

hub genes of up-regulated genes in the PPI, genes enriched in the adherens junction pathway of dif-

ferentially expressed genes and the WGCNA were intersected. The gene Ctnnb1 (log2FC = 3.24, FDR 

= 2.40 × 10−4) was found significant in all three analyses (Figure 5B). The adherens junction pathway 

map and gene expression heatmap are plotted in Figures 5C and S5. 
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Figure 5. The adherens junctions pathway is significantly enriched in the CTC-S group. (A) Venn plot 

of enriched pathways in differentially expressed genes and weighted gene co-expression network 

analysis (WGCNA). Six pathways included focal adhesion (KEGG: 04510), ECM-receptor interaction 

(KEGG: 04512), adherens junction (KEGG: 04520), AGE-RAGE signaling pathway in diabetic compli-

cations (KEGG: 04933), proteoglycans in cancer (KEGG: 05205) and fluid shear stress and atheroscle-

rosis (KEGG: 05418) were significantly enriched in both differentially expressed genes and WGCNA. 

(B) The intersection of enriched genes in the adherens junction pathway of differentially expressed 
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genes, enriched genes in the adherens junction pathway of the brown module in WGCNA, and hub 

genes. Ctnnb1 is at the intersection of all three lists. (C) Gene expression in the adherens junction 

pathway was plotted by PATHVIEW [33]. Red represents up-regulated genes, while green represents 

down-regulated genes in the CTC-S group. The Venn plots in this study were generated by imageGP 

(available online: http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html, accessed on 

23 April 2020). 

2.4. Ctnnb1 and Klf4 Positively Correlate 

Next, we evaluated the correlation between Ctnnb1 and stemness/pluripotency markers 

(Aldh1a2, Met, and Klf4), which were significantly up-regulated in the CTC-S group (Figure 6). 

Among these, we found that Ctnnb1 overexpression most significantly correlates with Klf4 upregula-

tion (r = 0.50, FDR = 4.99 × 10−5). 

 

Figure 6. The correlation analysis of the candidate gene (Ctnnb1) and stem markers (Aldh1a2, Met and 

Klf4) demonstrates the positive correlation between Klf4 and Ctnnb1. Gene expression histograms are 

represented on the diagonal. The lower left part is the scatter plots and the numbers in the upper right 

part correspond to the Pearson’s correlation coefficient. *** FDR < 0.001; **, 0.001 < FDR < 0.010; . 0.050 

< FDR < 0.100. 

2.5. CTNNB1 Is a Negative Prognostic Factor in Human PDAC 

As reported above, Klf4 and Ctnnb1 were significantly up-regulated in murine pancreatic CTCs 

with stem-like features. To explore whether KLF4 and CTNNB1 are differentially expressed between 

pancreatic tumor and normal tissues, the visualization web tool Gene Expression Profiling Interactive 

Analysis 2 (GEPIA 2) (available online: http://gepia2.cancer-pku.cn, accessed on 7 March 2020) was 



Diagnostics 2020, 10, 305 12 of 21 

 

utilized [34]. When evaluating The Cancer Genome Atlas (TCGA) data, both KLF4 and CTNNB1 were 

up-regulated in PDAC compared to the matched normal tissues and the Genotype–Tissue Expression 

(GTEx) data [35] (Figure 7A,B).  

 

Figure 7. The clinical value of KLF4 and CTNNB1. The box-plots with data overlaid dot plots for KLF4 

(A) and CTNNB1 (B), showing expression in TCGA PAAD tumors with correspondent match PAAD 

normal tissue and GTEx pancreatic tissue. * p-value < 0.001. Clinical prognostic value of KLF4, overall 

survival (OS) (C), progression-free survival (PFS) (D), and relapse-free survival (RFS) (E). Clinical 

prognostic value of CTNNB1, OS (F), PFS (G) and RFS (H). Box plots were generated using GEPIA2 

(available online: http://gepia2.cancer-pku.cn/#index, accessed on 7 March 2020). 

We further investigated whether candidate genes expression levels correlate with clinical prog-

nosis, including overall survival (OS), progression-free survival (PFS) and relapse-free survival (RFS) 

(Figure 7C–H) in the TCGA cohort [36]. No significant influence of KLF4 on survival was observed. 

In contrast, although CTNNB1 expression does not influence OS (Hazard Ratio (HR) = 1.20, log-rank 

p-value = 0.373), patients with higher CTNNB1 expression have significantly worse PFS (HR = 1.67, 

log-rank p-value = 0.009) and RFS (HR = 2.65, log-rank p-value = 0.023).  

3. Discussion 

The aim of this study was to identify and characterize pancreatic CTCs with stem-like charac-

teristics and explore potential underlying mechanisms through integrated bioinformatics analysis. 

Numerous molecular markers, including Cd24, Cd44, Prom1 (Cd133), and other genes, have been 

applied in order to define pancreatic cancer stem cells (CSCs) [30,37,38]. The CTC subgroup identified 

in this study as CTC-S demonstrated heterogeneous expression of stemness and pluripotency mark-

ers in comparison to CTC-N, with some markers showing increased expression (Aldh1a2 and Klf4), 

some with reduced levels (Abcg2, Cd44, Cxcr4, Nanog and Sox2) and others with no significant change 
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in expression (Aldh1a1, Cd24a, Met and Prom1). The mutual exclusivity phenomenon may be due to 

the heterogeneous nature of stem-like cells and stemness markers [39]. Similar results have been pub-

lished for breast cancer, where CD44high / CD24low defines a cluster of tumor cells with stem-like fea-

tures [40]. This mutual exclusivity is confirmed in the here-presented results. 

The invasive capabilities (e.g., migration and invasion) of tumor cells are a prerequisite for suc-

cessful initiation and completion of metastasis. Accumulating evidence suggests that these features 

can be acquired through epithelial–mesenchymal transition (EMT), which is considered as a hallmark 

of tumor cell dissemination [31,41]. The CTC-S subpopulation exhibits a mixed epithelial/mesenchy-

mal phenotype, while the CTC-N group exhibits neither epithelial nor mesenchymal markers. This is 

consistent with previous studies relating EMT to stemness [42,43]. Furthermore, CTCs with partial 

EMT phenotype or stem-like features may predict unfavorable survival in cancers independently 

[44]. 

Epithelial markers (most prominently EpCAM) have been widely used as identification and iso-

lation markers of CTCs, and the prognostic value of EpCAM-positive CTCs is evident [15,45–48], but 

previous data have pointed towards a relative down-regulation of epithelial markers on CTCs [13]. 

The here-presented results draw a more complex image of EpCAM expression in CTCs—it can be 

speculated that EpCAM expression on CTCs is a continuum from EpCAM-negative to highly EpCAM-

positive cells. While, in this work, EpCAM seems to be relatively overexpressed on cells with presum-

ably higher metastatic potential, more research on the role of EpCAM on CTCs is clearly required. 

In theory, the loss of cell adhesion molecules during EMT should also coincide with the down-

regulation of genes associated with adherens junctions. While both Cdh1 and Cdh2 (generally consid-

ered a mesenchymal marker) are downregulated in the CTC-S subgroup, most of the genes in the 

adherens junction pathway are up-regulated in comparison to CTC-N, resulting in a mixed epithe-

lial/mesenchymal phenotype of CTC-S. This may represent a transitory state allowing CTC-S to un-

dergo functional adaptation during the metastatic cascade [49]. Additionally, this overexpression of 

adherens junctions may enable CTC-S to bind to endothelial cells prior to extravasation. 

Intercellular adhesion has been demonstrated to be crucial for successful metastasis of epithelial 

cancers [50]. Among the different types of intercellular adhesions, cell–cell adherens junctions are the 

most common and contribute to cell polarity, tissue architecture maintenance, cell movement limita-

tion, and proliferation [50]. Strong adherens junctions are mediated by the cadherin–catenin complex 

[51–53]. The here-presented data show that the CTC-S cells express low levels of E-cadherin (Cdh1), 

while the other genes from the adherens junction pathway were up-regulated, such as Rhoa and 

Cdc42, both of which are necessary for adherens junction maintenance [54,55]. We hypothesized that 

CTC-S cells are in the process of forming the adherens junction through actin cytoskeleton remodel-

ing [56].  

Besides, another critical component of adherens junctions, plakoglobin (also known as γ-

catenin), was found to be necessary for the formation of CTC clusters and further contributed to the 

metastatic cascade [57,58]. In summary, adherens junctions are critical to the formation of CTC clus-

ters, which can form tumor-microemboli, ultimately outgrowing to overt metastases [57]. These cel-

lular aggregates have been detected in 81% of PDAC patients with unfavorable OS and PFS [59]. 

However, it must be taken into account that all 75 pancreatic CTCs analyzed in this study were iso-

lated individually, which means there are no data derived from CTC clusters in this dataset; the va-

lidity of the here-presented data concerning CTC clusters is therefore limited. 

Numerous studies have explored the Wnt signaling pathway, mainly due to the fact that canon-

ical Wnt signaling regulates, stabilizes, and promotes the accumulation of the β-catenin by inhibiting 

its degradation [60,61]. A few studies have demonstrated that Wnt/β-catenin signaling plays a crucial 

role in the plasticity of stem cells [62,63]. Furthermore, Wnt signaling is activated in pancreatic CTCs 

according to the original study of GSE51372 [64]. Unexpectedly, we found no significant correlation 

between Wnt family members and Ctnnb1 in the pancreatic CTC-S group. In fact, according to our 

results, these Wnt family members are even expressed at low levels (Figure S6). Given that Klf4 is 

overexpressed in the CTC-S group, we believe that Klf4 inhibits Wnt signaling in this context [65]. 
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Besides, the -catenin has been determined to be necessary for cell adhesion and pluripotency, even 

without Wnt signaling [66]. 

Klf4 (Krüppel-Like Factor 4) is enriched in CTC-S, which positively correlates with Ctnnb1. As 

reported, Klf4 is a versatile marker that can both suppress [67] or support [68] PDAC. Several studies 

have investigated Klf4, which encodes a protein that belongs to the Krüppel family of transcription 

factors and plays a vital role in maintaining embryonic or induced pluripotent stem cells as well as 

in preventing their differentiation [28,69,70]. In a recent study, Zheng et al. [71] found that Klf4 pro-

motes CTC survival by increasing intracellular reactive oxygen species. Intriguingly, Klf4 can interact 

with Ctnnb1 through transcription regulation or direct protein interaction. As Tiwari et al. [72] re-

ported, Ctnnb1 is one of the direct repression targets of the transcription factor Klf4. On the opposite 

side, -catenin could also bind with the promoter of Klf4 through activating the canonical Wnt path-

way, as reported [73]. However, we found that the canonical Wnt family members are expressed at 

low levels, as previously mentioned. The evidence suggests that the interaction between Klf4 and -

catenin might be happening through the formation of a protein complex rather than via the transcrip-

tional regulation in the pancreatic CTC-S group. Even though there are studies claiming that Klf4 

inhibits β-catenin [74–76], there are other reports showing that the Klf4 / β-catenin complex is neces-

sary for the self-renewal capacity of stem/cancer cells [68]. The consensus is that the protein–protein 

interaction between Klf4 and β-catenin happens in the nucleus [68,74–76]. According to previously 

published results [76,77], the cytoplasmic β-catenin could migrate to the nucleus freely, and there 

promote the transcription and translation of β-catenin targeted genes in conjunction with transcrip-

tion factors. Among the -catenin binding proteins extracted from epithelial cells nuclei, a 55-kDa 

protein could be identified as being KLF4 [76]. Furthermore, the de novo synthesis of both E-cadherin 

and β-catenin increased at a similar rate in order to reconstruct an adherens junction after the prote-

olytic disruption of this extracellular interaction in epithelial cancer cells [77]. 

Clinically, KLF4 expression in the primary tumor does significantly influence survival. CTNNB1 

is a negative prognostic marker for RFS and PFS. For OS, a trend can be seen, but it fails to reach 

statistical significance. This supports the hypothesis that the high expression of Ctnnb1 in CTC-S con-

tributes to the formation of adherens junctions, which in turn may promote the survival of CTC-S in 

circulation [78]. However, it must be taken into account that the clinical validation was performed 

using RNA-seq expression data of bulk tumor cells from the primary tumor rather than single-cell 

RNA sequencing of CTCs, which limits its validity. 

It is important to reinforce that this study is an in silico analysis of a single pre-existing dataset 

from a single pancreatic cancer model, since no other high-throughput sequencing datasets of pan-

creatic CTCs are publically available. To reduce the bias from limited study resources, we combined 

the analysis of differentially expressed genes, WGCNA, correlation analysis, and added clinical sur-

vival data. The limited sample size, and the absence of prognostic data directly associated with CTC 

expression data, may partially limit the results. With all that under consideration, more preclinical 

and clinical studies are necessary to confirm our findings. However, despite its exploratory nature, 

this study offers new insight into pancreatic CTCs with stem-like characteristics. 

4. Materials and Methods 

4.1. Data Collection, Data Quality Check, and Normalization 

Single-cell RNA-sequencing data of 75 murine pancreatic CTCs with sufficient quality in dataset 

GSE51372 were downloaded from the Gene Expression Omnibus (GEO) database (available online: 

http://www.ncbi.nlm.nih.gov/geo/, accessed on 19 August 2019). Gene expression and clinical infor-

mation profiles for Pancreas Adenocarcinoma (PAAD) patients were obtained from The Cancer Ge-

nome Atlas (TCGA) data portal (available online: https://tcga-data.nci.nih.gov/tcga/, accessed on 19 

August 2019) [36]. 

In the pre-process part, an integrated web tool iDEP 9.0 (available online: http://bioinformat-

ics.sdstate.edu/idep/, accessed on 7 March 2020) was employed to analyze the 75 CTCs sequencing 

data [79]. Three samples with a sequencing depth of less than two counts per million (CPM) were 
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excluded, genes with less than 0.5 CPM in all the samples were also filtered out, and then transformed 

the remaining 72 samples with EdgeR: log2(CPM + c), pseudo count c = 4 [79]. (Figure S1) Mitochon-

drial RNA (mtRNA) was not used for QC as mtRNA is not contained in the GSE51372 read counts 

file. 

4.2. Principal Component Analysis (PCA)  

The top 3000 (approximately equal to 25%) [80] most variable genes were identified by the iDEP 

9.0. Then, we used an open-source web tool named ClustVis (available online: 

https://biit.cs.ut.ee/clustvis/, accessed on 7 March 2020) to perform the PCA and generate the PCA 

score plot [81]. Imputation was deemed unnecessary since the data were normalized in the aforemen-

tioned part. PCA loading data were downloaded from ClustVis and visualized using imageGP (avail-

able online: http://www.ehbio.com/ImageGP/index.php/, accessed on 23 April 2020). Next, the corre-

sponding stem markers (PCA loadings) were used to define the distinct PCA score cluster with stem-

like features. 

4.3. Identification of Differentially Expressed Genes  

After pre-processing, read counts of 11,931 genes were used to identify the differentially ex-

pressed genes. Data analysis was performed using the R package DESeq2 [82]. |Fold change (FC) | > 

2 and a corrected p-value, false discovery rate (FDR) < 0.050 (Benjamini–Hochberg procedure) were 

set as cutoffs. 

4.4. Weighted Gene Co-Expression Network Analysis (WGCNA) 

We constructed a gene co-expression network of the 3000 most variable genes using the WGCNA 

package [83] in R x64 3.6.1 based on Euclidean distance. Before the topological overlap matrix con-

struction, we estimated the soft threshold β. The details are described in Figure S4. To identify the 

module correlated with stem-like traits, we used the dynamic tree-cut algorithm (automatic single 

block method) to cluster dendrogram branches into several modules and assigned them colors. The 

minimum module size is set at 30, and the modules with larger than 0.9 pairwise correlation were 

merged. Only the module which significantly positively correlated with stem-like traits was included 

in the subsequent study. 

4.5. Definition of Hub Genes 

The up-regulated genes were submitted to the STRING 11.0 database [32], and the Protein–Pro-

tein Interaction (PPI) network was reconstructed via the Cytoscape software, version 3.5.1 or higher 

[84]. In addition to text mining, other basic settings were selected, such as co-expression, co-occur-

rence, databases, experiments, gene fusion, and neighborhood as active interaction sources. Besides 

that, only interaction pairs that scored >0.9 in the network were selected. 

We used the cytoHubba plugin in Cytoscape, which provides 12 topological analysis methods 

including cluster coefficient, degree, the density of maximum neighborhood component, edge perco-

lated component, maximal clique centrality, maximum neighborhood component and six other cen-

tralities (betweenness, bottleneck, closeness, eccentricity, radiality, and stress) for ranking nodes [85]. 

If the analyzed genes ranked in the top 10% in more than eight of the aforementioned methods, they 

were defined as hub genes. 

4.6. Functional Enrichment Analysis  

We used g:Profiler (available online: https://biit.cs.ut.ee/gprofiler/gost, accessed on 23 March 

2020) [86] to perform functional enrichment analysis. Several enriched pathways of the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) [87] and functional interpretations of gene ontology (GO) 

[88], including biological processes (BP), cellular components (CC) and molecular functions (MF), 

were identified [28]. The enrichment of fold >2.0 and FDR <0.010 were set as cutoffs. 
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4.7. Kaplan-Meier Survival Plot 

Pathologically confirmed PDAC samples and their corresponding RNA-seq data from TCGA 

were included in this experiment [20]. Pre-processed level 3 data generated using Illumina HiSeq 

2000 RNA Sequencing V2 and gene symbols KLF4 and CTNNB1 were used. For each tumor sample 

of the patient, the expression level was determined using a combination of MapSplice and RSEM. 

The individual sample files were merged in R using the plyr package [89]. In the next visualization 

step, GraphPad Prism 8.2.1 was utilized for the Log-rank (Mantel–Cox) test and to generate the 

Kaplan–Meier plots. 

4.8. Statistical Analysis 

Correlations of gene expression were evaluated with cor function (Pearson method by default) 

in R with the PerformanceAnalytics package. We calculated the Benjamini–Hochberg FDR. Only FDR 

<0.050 was considered statistically significant. 

Additional tools used in this study are listed in Table S1. 

5. Conclusions 

In summary, we performed an integrated bioinformatic analysis of single-cell RNA sequencing 

data of pancreatic CTCs derived from the GEMM. We identified two distinct cell populations with 

(CTC-S) and without (CTC-N) stem cell-like properties. Various markers, including EMT-transcrip-

tion factors, epithelial, mesenchymal, stemness, pluripotency, and proliferation markers, were used 

to characterize the CTC-S population. The adherens junction pathway was found to be significantly 

enriched CTC-S. This pathway may be activated by up-regulated Ctnnb1 (-catenin) through its con-

junction with transcription factor Klf4, thus enabling CTC-S to survive in the bloodstream and pro-

mote distant metastasis. 

To conclude, this study suggests that pancreatic CTCs with stem-like features might survive in 

the bloodstream and reach target organs due to evaluated Ctnnb1 expression and the activation of 

intracellular adherens junctions pathway. 

Supplementary Materials: The following are available online at www.mdpi.com/2075-4418/10/5/305/s1, Figure 

S1: Pre-processing the raw data of the pancreatic circulating tumor cells (CTCs); Figure S2: The classification of 

72 samples; Figure S3: The differential expressed genes; Figure S4: The construction of the weighted gene co-

expression network of 72 pancreatic CTCs; Figure S5: The heatmap of genes involved in adherens junction path-

way; Figure S6: Correlation analysis of Ctnnb1 and Wnt family members in pancreatic CTC-S group. Table S1: 

Online web tools utilized in this study. 
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